Extracting embedded generalized networks from linear programming problems

نویسندگان

  • Gerald G. Brown
  • Richard D. McBride
  • R. Kevin Wood
چکیده

If a linear program tLP) possesses a large generalized network (G N) submatrix, this structure can be exploited to decrease solution time. The problems of finding maximum sets of GN constraint s and finding maximum embedded GN sub matrices are shown to be NP-complete, indicating that reliable, efficient solution of these problems is difficult. Therefore, efficient heuristic algorithms are developed for identifying such structure and are tested on a selection of twenty-three real-world problems. The best of four algorithms for identifying GN constraint sets finds a set which is maximum in twelve cases and averages 99.1% of maximum. On average, the G N constraints identified comprise more than 62.3% of the total constraints in these problems. The algorithm for identifying embedded GN submatrices finds submatrices whose sizes, rows plus columns, average 96.8% of an LP upper bound. Over 91.3% of the total constraint matrix was identified as a GN submatrix in these problems, on average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized implicit enumeration algorithm for a class of integer nonlinear programming problems

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

Modified FGP approach and MATLAB program for solving multi-level linear fractional programming problems

In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors i...

متن کامل

Layering strategies for creating exploitable structure in linear and integer programs

The strategy of subdividing optimization problems into layers by splitting variables into multiple copies has proved useful as a method for inducing exploitable structure in a variety of applications, particularly those involving embedded pure and generalized networks. A framework is proposed in this paper which leads to new relaxation and restriction methods for linear and integer programming ...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 1985